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SYMBOLS AND EQUATIONS 

oo 

P 

C 

oo 

p 

V 

St 

Velocity of undisturbed flow. 

Local pressure at any point. 

Pressure coefficient 
p - p 

^ oo 

Pressure in the undisturbed fluid. 

Dynamic pressure 

q 

Density. 

Velocity at any point in the flow. 

Pressure coefficient 

7    V2 
2       oo 

P -P 

V 
Stagnation pressure 

oo =   1 
\ v OO' 

St p     + q rco        * 

Local pressure at any point 

p  =   C     q + p r p  n     roo 

Vapor pressure of the liquid 

Vapor cavitation parameter 

P     " P rco    Kv 

Eq. 
No. 

(1) 

(2) 

(3) 

1st Text 
Reference 

Pag* 
1 

1 

1 

2 

2 

2 

2 

2 

2 

3 

VI 

Pk 

Incipient vapor cavitation parameter. 

Pressure in open cavity regardless of the 
gas with which the cavity space is filled. 

Cavity parameter 

'k" 
Poo-Pk 

(4) 

the characteristic parameter for open cavities of any type, 
regardless of what gas fills the cavity at a pressure    p. . 

3 

5 



Symbols and Equations 
(cont'd) 

V, Velocity of the cavity boundary streamline, 

The Bernoulli equation 

'DO 

reduces to the ratio 

2 

V co 

;_ Drag coefficient 

'D  5 

1st Text 
Eq. Reference 
No. Page 

ipyc;+Poo = ipvk + Pk <5> 

vk 
x  1 + «r. (6) 

and determines the velocity of the cavity 
boundary streamline 

V
k = Voo<1+*k>l/2' <7> 

-T-- (8) 

^D 

D Drag force on the body in the flow. 7 

An Transverse area of fhe body at ? 

d the diameter where \he flow separates to 
form the cavity. ' 

The pressure across an elemental area of a 
body having an attached open cavity is 

P-Pk = q(Cp+ <rk)   . (9) 11 

The "stagnation cup" having  C    =1 over its 
entire inside bottom surface will then have a 
drag coefficient 

CD=l(l+<rk). (10) 11 

Drag coefficient at    a    = 0.    For the "stagnation 
cup",    Cnf» = 1   and it therefore complies exactly 
with the relation 

CDsCD0<l+'k> (U) U 

which holds approximately for any cavity- 
producing solid body. 
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Symbols and Equations 
(cont'd) 1st Text 

Eq. Reference 
No. Page 

V. Velocity of the re-entrant jet or the jet 
forming a jet cavity 

V. = V     (1 + <r, )L/2. 19 j        oo x k' 

D. Drag of the jet cavity 

D. = QpAV. (12) 22 

Q Volume rate of flow of the jet liquid. 22 

A V Change in velocity of the jet liquid 

AV = V     (1 + <r, )1'2 + V 22 co l k' oo 

A. Transverse area of the jet. 22 
J 

D. Drag of the jet cavity 
Dj = pAjv« L(l+v+ (l+\)l/z J • (l3)        2Z 

Cn.        Drag coefficient of the jet cavity 

C      ,  A=2[(i+«rk)Ml+ak)1/2]       (u) lz 

» 4 + 3  o   . (14') 22 

Cn Drag coefficient of any body producing 
a cavity,  expressed in terms of the ratio 
of the area of the re-entrant jet to the 
area of the body, 

cD.a[(i+,„)♦(.♦%) 
A: 

-Z —L   (4 + 3 or ) . 
AD 

The area ratio is,  therefore 

A. Cri 
_i = _ 1!     n (16) 23 
A, 

.   A. 

J  AD 

(15) 22 

(15') 23 

D (1 ♦%> ♦ < 1 ♦ \)Ul] 

CD 
4+3«rk 

(16') 23 

in 



or,  by use of   C DO, 

Symbols and Equations 
(cont'd) 1st Text 

Eq. Reference 
No. Page 

A. 
J    _ 

CD0(l + <rk) 

LD       2[(l+<rk) + (l+ak)l/2 
(17) 23 

'DO 

--f (1+*^ (17-) 23 

Dm     The cavity drag coefficient,   based on 
the cavity diameter 

m 

m 

'Dm qA m 

Transverse area of the cavity at 

the maximum diameter of the cavity. 

From the definition equations for 
CDm  and  CD« 

\|^ Dm 

Length of cavity. 

D    d m 

(18) 

(19) 

24 

24 

24 

24 

25 

NOTE:     All pressures denoted throughout the report are absolute. 

IV 



Introduction 

When a solid body is submerged in a liquid,   its surfaces contact the 

liquid and remain in contact at low flow velocities.    Very high velocities, 

however,   may produce a condition in which only part of the surfaces con- 

tact the liquid.    At some intermediate stage,  the velocity will be just high 

enough to reduce the local pressure at some point on the body to the vapor 

pressure of the liquid,  thus producing boiling or cavitation.    In order to 

reach the vapor pressure,   the amount of pressure reduction that must be 

brought about by the velocity of the liquid relative to the body depends on 

the ambient temperature and the submergence pressure. 

At velocities considerably greater than that required for incipient 

cavitation,  the liquid ceases to remain in contact with the entire surface 

of the body with the result that attached open vapor cavities are formed. 

The open cavity condition,  however,   does not require the cavity gas to be 

the liquid vapor.    With another gas held at a pressure higher than the va- 

por pressure,  the open cavity condition can be maintained at a more mod- 

erate velocity or a higher submergence. 

The following analysis and summary of the characteristics of open 

cavities is based on part of an investigation of free-boundary flows con- 

ducted for the Office of Naval Research in the Free-Surface Water Tunnel 

at the Hydrodynamics Laboratory of the California Institute of Technology. 

The open cavity analysis is introduced by means of some considerations 

of noncavitating flow about a body,   of the inception of vapor cavitation, 

and of the growth of open cavities. 

The Pressure Coefficient 

In an infinite extent of incompressible,   nonviacous,  noncavitating, 

steady flow having a uniform approach velocity V     relative to a body in 

the flow,  the local pressure  p at various points in the vicinity of the body 

or on its furface can be given in terms of the dimensionless pressure coef- 
ficient 

p - p 
c0 - —!=■ in 



Here  p      is the pressure in the undisturbed fluid approaching the body and 

q = l/2p V      is the dynamic pressure that can result from the relative mo- 

tion of the fluid having a density  p .    The principal reason for introducing 

C    is that its value at any point in such a flow field or on the boundaries is 

a function of only the body shape and orientation and is independent of the 

size of the body or of the values of   p,   V^,  and p^. 

The orientation of the body determines the point or points where the 

velocity is reduced to zero.    Since the pressure  p at any point having a 

velocity V can be compared with PQO where the velocity is  V^ by means 

of the Bernoulli relationship 

p      i \ V 
the pressure coefficient reaches its maximum value  Cp = 1  at such a 

point of zero velocity and the corresponding pressure is the stagnation 

pressure  p     = p     + q.     The shape of the body then determines the ve- 
r rst        oo 
locity at other points on its boundary and in the flow field.    In order for 

the fluid to pass around the obstacle,  it is of course necessary that in 

some regions it be accelerated to local velocities higher than  V^,  and 

this results in negative values of the pressure coefficient and in local 

pressures that are lower than p^.    The lowest value of the pressure coef- 

ficient,  i.e. ,  the negative term of greatest magnitude will occur some- 

where on the surface of the body,  as can be shown (see   Lamb pp.   38-39)» 

This might be expected since it is the presence of the body that causes 

the fluid to be accelerated to the higher velocities. 

Vapor Cavitation 

At the point where the pressure coefficient Cp is lowest,  the local 

pressure  p = C   q + p      will be a minimum.    A body with a sufficiently 

low value of  C    in a liquid flow of sufficiently high dynamic pressure   q 

and low pressure  p^ will cause the minimum local pressure  p   to be as 

low as the vapor pr^sure  pv<     If we neglect boiling delay that requires a 

tension in the liquid,   boiling or cavitation will occur at this low pressure 

point and produce cavities having an internal pressure  py. 

The flow can be described with respect to its potentialities for lower, 

ing  p to p    by using Py in the dimensionless vapor cavitation parameter 



p    - p 
m   

poo     Fv (3) 
V x    ' 

q 

which is a function of the flow situation only,  and independent of the body. 

This vapor cavitation parameter   a-     depends on the characteristics of 

the approaching flow;   that is,  the pressure   p    ,  the vapor pressure  p  , 

and the dynamic pressure   q which can result from the relative velocity 

V    .    No reference to the effects of the shape of the body or boundaries 

under consideration is contained in   a   ;   a low value of this parameter indi- 

cates only that the flow conditions have high potentialities for producing 

cavitation. 

The cavitation situation for a particular body or boundary configur- 

ation is determined by comparing the vapor cavitation parameter <r    for 

the flow conditions with the pressure coefficient  C     for the body.    The 

comparison should be made with the lowest value of C     that occurs on 

the body,  since this determines the lowest pressure for a particular flow 

condition 

is,   when 

condition.    When   a     is as low as the maximum negative value of  C   , that 

or 

<r    =   o-   . = - C v vi p 

P      " P P     " P roo     rv roo     r 

then P  =  Pv • 

Except for boiling delay,   cavitation will then be incipient. 

Until    er     is reduced to the critical value equal to the maximum v ' 
negative  value of C   ,  it has no particular significance in determining the 

flow pattern about a body.    This critical value of   <r   ,  i.e. ,   <r   .,  however, 

is sometimes referred to as the "cavitation parameter" for the body shape. 

More specifically,  it i. ihe vapor cavitation parameter for the flow condi- 

tions that are critical for the body under consideration,  in that they are 

just able to lower p to p    at the point where  C    is lowest and thereby 

produce incipient cavitation.    This   <r   .   is the value of prime interest in 

hydraulic machinery and other applications where cavitation must be 

avoided. 



r 
Growth of Open Cavities 

The vapor cavitation parameter  <r   ,  being a function of the flow con- 

ditions only,  can be reduced below the critical value which produces incip- 

ient cavitation on a body.    If there were still no alteration in the flow pat- 

tern,  this would result in a region where the local pressure is less than 

p  •    With any chance rupture of the liquid in this region of tension,  however, 

the flow pattern becomes dependent on the value of   <r     and the pressure will 

not be as low as  C   q + p    .    The simplified Bernoulli relationship does not 

apply when frequent rupture produces vapor cavitation bubbles that move 

along with the flow.    The fluid is then no longer a homogeneous liquid of 

density  p . 

There might be any degree of relief of this tension in the liquid,  de- 

pending on the history of the oncoming flow.    This would be influenced by 

inertial effects governed by the time available for the radial growth of va- 

por bubbles,  as well as by viscous and surface tension effects when   real 

fluids are involved.    Some of   he studies in this laboratory have shown,  for 

example,  the large influence of the boundary layer on the time available 

for bubble growth.    The minimum pressure might be expected to be no low- 

er than p     at any point on the boundary of the body where the oncoming 

flow was subjected to a sufficiently low pressure for a time adequate for 

the growth of closely-spaced vapor bubbles.    The pressure should then in- 

crease monotonically from  p     at this point on the boundary to P      far 

away along a line perpendicular to the flow direction,   even though the values 

of C     in this region for noncavitating conditions indicate lower pressures. 

Another way for the pressure field to be altered from what is indi- 

cated by the values of C   .obtained under noncavitating conditions,  would be 

for the closely-spaced vapor bubbles to coalesce and become attached to 

the solid boundaries in the low-pressure region.    In this case,  the liquid is 

homogeneous but the boundary configuration for the liquid flow is altered. 

The open cavity will so alter the flow pattern that accelerations will not be 

of sufficient magnitude to produce velocities any higher than necessary for 

p   to be reduced to   p  .     The boundary configuration for the liquid flow then 

consists of an unalterable portion of the solid body followed by a free bound- 

ary that must assume some shape which produces the required local veloci- 

ties.    This total boundary shape must produce,  as indicated by the flow net, 



the pressure and velocity ratios that are necessary for the pressure to be 

p   .    Since these necessary ratios are determined by   a   ,  it follows that 

the shape of the open vapor cavity is some function of   cr   . 

With open cavities resulting from these low values of   <r   .it should be 

expected that any gas at the same pressure and having negligible dynamic 

effect could be substituted for the vapor without affecting the cavity shape. 

Furthermore,   since the shape of the vapor cavity is a function of   a   ,  in 

which the pressure difference   p     - p    is involved,  the cavity shape should 

now depend on the difference between p     and the pressure   p.    in the new 

cavity gas without being affected by changing  p     and p,    by the same amount. 

With this gas pressure  p.   substituted for the vapor cavity pressure  p  ,  the 

cavity parameter 

'k  =    M 
q 

can be used as the characteristic parameter for open cavities of any type, 

regardless of what gas fills the cavity at a pressure  p..    Just as the shape 

of the open vapor cavity is a function of o"   ,  the shape of an open cavity 

filled with any gas having negligible dynamic effect is a function of  tr,. 

The lower the value of the cavity parameter <r, , the nearer the ve- 

locity at the cavity wall V, will be to the free-stream velocity. That the 

velocity ratio is near unity at low values of cr, is shown by the Bernoulli 

equation 

*/2 pVL + Poo  =  l'2 pVk + Pk <5> 
for a stream filament adjacent to the cavity interface.    Transposing and 

dividing by  q = l/2 pV      gives 

i/apVfc _it  Pop-Pk 

which reduces to the significant ratio 

-7   =   1 + <rk (6) 
V2 

oo 



and determines the velocity of the cavity boundary streamline 

Vk  =   Vco(l + ^/2. (7) 

Application of the flow net will show that a decreasing curvature of 
2      2 

cavity wall is required when the ratio  V. /V      is reduced toward unity by 

lowering  <r, .    Since reduction of   o,    reduces the curvature of the free 

boundary,   it causes the cavity to grow longer and attain a larger length-to- 

diameter ratio.    Such long,   slim cavities necessarily have small curvature 

over the major portion of their length.    A change in this curvature by virtue 

of a change in   <r,  ,   therefore has a marked influence on the cavity shape as 

described by the length-diameter ratio.    The influence of the nose shape is 

confined principally to the end of the cavity,  for otherwise a large portion 

of the length could not have the smooth contours that result from a low 

value of the cavity parameter.    It seems,   therefore,  that the flow pattern 

soon becomes primarily a function of   o",    with the nose or front edge of the 

body contributing only minor local influences. 

Cavity Theory and Measurement 

It appears obvious that the size of an open cavity will be affected by 

the shape of the portion of the body in contact with the liquid.    Since the 

gross geometrical configuration of the cavity and the pr< ssure applied to 

the back side of the body is determined by the cavity parameter   <r, ,   the 

influence of the body shape is expected to be manifest in the pressure dis- 

tribution over the wetted portion of the body and the resulting drag coef- 

ficient. 

There have been theoretical determinations of many of these relations 

pertinent to flow about bodies with attached open cavities.    Reichardt  ' 

determined the dimensions and drag coefficients of axially symmetrical 

cavities as a function of the cavitation parameter by adjusting source-sink 

distributions to approach constant pressure at the boundary streamline. 

His computed values by such an approach were in close agreement with his 

extensive and systematic experimental measurements. 

3  4  5 Plesset and Shaffer  '   '     have determined the dimensions,  pressure 

coefficients,  and drag coefficients for two-dimensional cavities formed be- 

hind wedges of various apex angles by numerically computing certain 



7 

integrals in terms of which these parameters can be represented.    Perry 

analytically re-evaluated some of the integrals and extended them for lower 

values of the cavity parameter.    His evaluations of the drag and pressure 

coefficients and cavity dimensions were in agreement with the Plesset and 

Shaffer computations at high values of  a,    but resulted in some corrections 

to the cavity dimensions at low values of the cavity parameter. 

Although theoretical computations for two-dimensional cavity flow 

configurations have been numerous,  there have been few experimental 

measurements.    Reichardt's measurements,   often overlooked because they 

were presented in his report on axially symmetrical cavities  ,  showed that 

the width of two-dimensional cavities produced by supporting a flat lamina 

in a free-jet tunnel were in reasonably close agreement with the computations. 

It has also been demonstrated by Perry that two-dimensional cavities can be 

produced in the Free-Surface Water Tunnel at the California Institute of 

Technology. 

The sparsity of measurements on the two-dimensional configurations 

is possibly due to tunnel boundary effects being much more severe in this 

case than for axially symmetrical cavities.    Reichardt's data,  for example, 

showed some suggestion of boundary effects on the cavity dimensions when 

the width of the flat lamina was changed from 0. 5 mm to 1. 5 mm in a 20 cm 

free-jet tunnel.    It therefore appears advisable that such measurements of 

the dimensions and pressure or drag coefficients of two-dimensional cavi- 

ties be closely coordinated with evaluations of boundary effects. 

By assuming that the distribution of the pressure coefficient from the 

apex to the edge of a cone is the same as for the two-dimensional wedge at 

the same value of o-, ,  Plesset and Shaffer also computed the drag coef- 

ficients of cones at the head of axially symmetrical cavities.     The drag 

coefficient is here defined as 

cD 5 _2_ (8) 
■•AD 

where   D    is the drag force on the obstacle in the flow,  A_   is its transverse 

area where the flow separates at the diameter   d   to form the cavity, and 

q = l/2 pV      as previously defined.    In Fig. 1 is shown the agreement be- 

tween these computed values of the drag coefficient of a disk and the 
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experimental values over a very wide range of <r. .    The measurements were 

made on vapor cavities in a free-jet tunnel by Reichardt,   on vapor cavities 
7 

in a submerged-jet tunnel by Eisenberg   ,  and in water tunnels of two dif- 

ferent types at the California Institute of Technology where vapor cavities 
g 

were used by Kermeen    in the High-Speed Water Tunnel which has a closed 

working section and air cavities were used in the Free-Surface Water Tun- 

nel during the present investigation.    It is seen that there is reasonably 

close agreement regardless of the type of tunnel boundary or of the gas 

which filled the cavity. 

The cavity-drag measurements in the Free-Surface Water Tunnel, 

those by Kermeen in a closed working section,  and those by Reichardt in a 

free-jet tunnel,  were carried out for large variation in the bluffness of the 

head shape.    The measurements were not extended to the higher values of 

a,    because of difficulties with splash at the downstream end of the cavity. 

The nature of this re-entrant jet splash is discussed in more detail in later 

sections of this report.    The measured values of the drag coefficient are 

compared with theory in Fig. 2.    For the cones and disk,  the theoretical 

curves are from the Plesset and Shaffer computations which were based 

on the assumption that the pressure distribution from the center to the edge 

of separation of the axially symmetrical shape is the same as that calcu- 

lated for the corresponding two-dimensional shape.    The theoretical curve 

for the cup assumes that its entire inside bottom surface is subjected to 

stagnation pressure. 

Differences between the measured coefficients and the curves derived 

from two-dimensional theory might be expected.    Even though the pressure 

coefficients are the same at the center and again at the separation edge, 

deviations might be expected at intermediate points.    For some of the shapes, 

especially the slim cone of 15    half angle,  there is also a difference between 

the slope of the theoretical curve and the plotted data that has not been satis- 

factorily explained.    Although these differences may be due to some unknown 

experimental bias,  it is interesting to note that for the cup there is good 

agreement with theory in both the slope and the values of the plotted data. 

This is the shape for which one might have the greatest confidence that two- 

dimensional theory is correct for the axially symmetrical case.    This leads 

to consideration of the cup as a calibrating device for measurements of 
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1.41- 

CAVITATION   PARAMETER,   aK= ,Po°" \ 

Fig.   2 - Drag coefficient vs. cavity parameter   <r,     for cups, disks and cones 
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cavity drag. 

Stagnation-Cup Flow 

From Eqs. (1) and (4)  it is seen that the* p*«a«upe aero-** an elemental 

area of a body having an attached open cavity is 

P - Pk =  q(Cp+ <rk). (9) 

The "stagnation cup" having  C    = 1   over its entire inside bottom sur- 

face will then have a drag 

D = (P - Pk)AD= ^D*1 +(rk^ 

and a drag coefficient 

CD=l(l+<rk). (10) 

At   «■.   =  0,  the drag coefficient CDQ = 1.    The "stagnation cup",as here 

defined,  therefore complies exactly with the relation 

CD = CDO<1+ork> (U> 

that has been shown by Reichardt,  Plesset and Shaffer, and others to hold 

approximately for other head shapes at low values of   <r. .    With adequate 

evaluation of the depth necessary to produce a stagnation cup within the ac- 

curacy of practical experimental measurements, the cup shows promise of 

providing an excellent calibrating device for water-tunnel and towing-tank 

measurements in cavity-running head shapes. 

Some clue to the rapidity with which the drag coefficient of a cup ap- 

proaches the value   1 + <r.   as the depth is increased,  may be obtained from 

potential flow solutions for two-dimensional cup-shaped lamina.    During 
9 

the course of the present investigations,  Perry    has calculated the pressure 

distribution across the bottom of cup-shaped two-dimensional lamina for 

various depth-width ratios.    The results of these calculations shown in Fig. 3 

indicate that only a small depth is necessary in order to approach very 

closely the "stagnation cup" having  CD = 1 over the entire bottom surface. 

When the depth is only 20% of the width, the drag coefficient of the two- 

dimensional lamina is already within l/2% of its final value  C__ = 1  at 

er     = 0.    Furthermore,  it can be said with certainty that the cup-shaped 

lamina of moderate depth complies almost exactly with the relation 
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Fig.   3 - Pressure coefficients for the two-dimensional stagnation cup 
are shown as a function of the ratio of the distance   y   from 
the central stagnation line to the half-width   a   of the cup for 
various depth-width ratios. 
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C_j = CD0(1 + o",) expressed in Eq. (11) at low values of the cavity param- 

eter.    This is evident since it approaches the condition represented by 

Eqs. (10) and (11) exactly as the depth is increased.while even for zero 

depth,  where it is identical with the flat lamina,  the departure from Eq. (11) 

is only 0.2% at   cr,   = 0.42. 

By assuming that the pressure distributions of Fig. 3 hold for the 

axially symmetrical cup,  the drag coefficient as a function of the depth- 

diameter ratio has been calculated-    As shown in Fig. 4,  the drag coefficient 

quickly approaches that of a stagnation cup,   the deviation being less than 

l/lO of one percent when the depth is equal to the radius.    While it is often 

difficult to estimate even the direction of the error due to the application of 

two-dimensional theory to axially symmetrical flow configurations,   it is be- 

lieved that axially symmetrical cups of moderate depth have a true theo- 

retical drag coefficient curve that is higher than that shown in Fig. 4 

which is derived from two-dimensional pressure distributions.    This hy- 

pothesis is based on the expectation that the side wall more effectively re- 

tards the flow proceeding away from the relatively small region about the 

central stagnation point of the axially symmetrical cup than that proceeding 

away from the larger region about the central stagnation line of the cup- 

shaped lamina. 

It is concluded that the above or any more exact potential flow theory 

would require only a moderate depth for the drag coefficient to be practically 

as high as for the true stagnation cup.    Since the velocities at the cup sur- 

faces are lower than for any other shape,   real fluid effects should cause the 

least deviation from theory.    The stagnation cup should,  therefore,   make an 

excellent calibrating device for cavity measurements. 

Stagnation-Cup Measurements 

With the preceding hypothesis as an indication of the direction of the 

error in the three -dimensional theory due to its use of two-dimensional 

pressure distributions,  it is inferred that only a small depth is necessary 

to produce a stagnation cup having a drag coefficient as close to (1 + cr, ) as 

can be determined experimentally.    The results should be less than l/4 % 

below this value due to the use of a cup having a depth of only 1/4 diameter 

instead of a large or infinite depth. 
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Fig.  4 - The drag coefficient of the axially symmetrical cup 
shown as a function of the depth-diameter ratio 
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The experimental agreement with the value (1 + <r. )   is satisfactory, 

as shown in Fig. 2,  for the usual tests on cups having a depth about equal 

to the diameter.    When cups of reduced depth were tested during the present 

investigation,   however,   discrepancies appeared as shown in Fig. 4.    The 

experimental values were reduced to  CDQ by dividing by (i + or. ) and then 

averaged to obtain the points plotted.    There were from 4 to 17 measure- 

ments in the groups averaged and the group standard deviation (Hoel     ) 

based on all groups measured,  was 0.0038.    The measured drag coeffic- 

ients for the l/4-diameter cup are five or six standard deviations below the 

minimum theory line.    Further work would be required to establish the 

reason for this difference. 

The group standard deviation of 0. 38% indicates remarkable consist- 

ency of measurement,   since it was obtained while varying the cavity param- 

eter through a wide range.    The small group standard deviation is,  there- 

fore,  an indication that the data conforms with the relation  C-. = CQAO + <r. ). 

A more sensitive experimental comparison with theory was made by 

measuring the pressure difference between the central stagnation point and 

at a point midway out toward the wall at the bottom of cups of different 

depth-diameter ratio.    As shown in Fig. 5,   the experimental values of the 

pressure coefficient at this midpoint lie close to and slightly above the 

corresponding points in two-dimensional theory.    This is believed suffic- 

ient evidence to justify the use of the three-dimensional theory derived 

from two-dimensional pressure distributions as a means of selecting a suf- 

ficient depth for a stagnation-cup calibrator.    The drag coefficient measure- 

ments that appear too low in Fig. 4 indicate either an unknown source of 

error or the action of phenomena not yet brought into consideration. 

Real fluid effects are immediately thought of as a possible reason for 

the drag measurements being lower than predicted by potential flow theory. 

This was not the case,  however,   since a calculation of the forward-acting 

surface tension force due to stretching the free surface near the cup lip 

and a rough-over estimation of the forward-acting shear force on the cup 

wall did not account for the discrepancies of Fig. 4.    Furthermore,  it 

might be expected that such forward-acting forces on the cup are partially 

compensated for by an increased bottom pressure brought about by the re- 

tarded circulation that they cause.    The measurements in Fig. 5 that are 
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Fig.  5 - The pressure coefficient as a function of the depth-diameter 
ratio at a point midway out from the center of an axially 
symmetrical cup or a cup-shaped lamina 
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slightly higher than theory might be due to this effect or to the shift that is 

expected to be in the same direction because of differences between two- 

and three-dimensional flow. 

Cavity Models in Theory and Experiment 

In the early considerations of cavity flow by Helmholtz,  Kirchhoff, 

Rayleigh,  and others   ,   zero cavity number was assumed.     Under such 

conditions,  the velocity of the cavity boundary would be equal to the veloc- 

ity of the undisturbed stream,   as shown by Eq. (7).    Since this condition of 

<r,   = 0  resulted from an assumption that the pressure in the cavity was 

equal to the surrounding pressure  p    ,  it might be expected that a stream 

filament deflected aside by an obstacle would never return to the line of 

its original path.    The cavity would,  therefore,   extend behind an obstacle 

to infinity for the case of zero cavity number where there is no pressure 

difference,  p       - p. ,  acting in a direction to return the deflected boundary 

toward its original path. 

When there is a pressure difference,  p      - p. ,   which results in a 

positive cavity number,  the cavity boundary streamlines will return to 

form a finite closed cavity.    Riabouchinsky,      '      '       in 1920,  made the 

\ first calculation of the drag on a plate at the head of such closed cavities 

at  u,    >0 by using a cavity model in which an image plate is assumed at 

the downstream end opposite the real plate.    The free streamlines run 

from the edge of the real plate to the edge of the image plate.      The 
15 Riabouchinsky image-body cavity model was also used by Weinig (1932)     , 

by Zoller (1943)     ,  and by Plesset and Shaffer in the extensive computations 

previously mentioned. 

Image bodies or other closure bodies are not usually present when an 

object opens up a cavity in a fluid.    Nevertheless,   the pressure difference, 

p      - p.,   that exists when there is a positive cavity number causes the bound- 

ary streamlines to close and form a finite cavity.    It was shown by Eq. (7) 

that the cavity boundary streamline has a velocity greater than the free- 

stream velocity.    Since one could only expect that the velocity decreases 

monotonously from  V,   at the cavity wall to V     at a great distance from the ' K oo 
cavity,   the velocity of the boundary streamlines is greater than that of any 

of the surrounding flow.    With the curvature inward in the region under 
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consideration,  this obviously requires the boundary of a closed axially or 

two-dimensionally symmetrical cavity to fold back into its interior.    A re- 

entrant jet is thus formed which flows upstream into the cavity with a sur- 

face velocity V.   = V    (1 + G^S      relative to the cavity-producing body. 

For slim cavities at low cavity numbers,  the entire profile of the jet will 

approach this velocity  since the jet is surrounded by constant pressure and, 

therefore,  will approach constant pressure and velocity throughout. 

The re-entrant jet representation of the finite cavity was used by 
17 Kriesel (1946)     and attributed to PTandtl's discussion in August 1945, and 

to indirect evidence of his proof,  as early as 1929,  of zero drag on the ob- 
18 ject if the back pressure of the jet is counted.    Gilbarg and Rock (1946) 
19 attributed the re-entrant jet representation to Wagner;  Gurevitch (1946) 

20 attributed it to Effros (1946)     .    In order to get a nonzero drag for cavity 

numbers above zero,  these investigations have excluded the action of the jet 

on the grounds that it is dissipated at the rear end of the cavity without af- 

fecting the forward part. 

Comparisons of the calculations based on the Riabouchinsky image- 

plate model and the re-entrant jet configuration were made by Gilbarg and 
21 22 Roch,  Gurevich,   Wehausen      and Arnoff (1950)    .    The agreement is within 

a fraction of a percent on the drag coefficient and cavity diameter for   a, 

less than one,  and on cavity length for   ,T,    less than about 0.4.    It would 

seem that any difference between Plesset and Shaffer's calculation and the 

true drag of cones at the head of axially symmetrical cavities is due to the 

use of the pressure distribution for the two-dimensional case and not to the 

use of the Riabouchinsky image-plate model rather than the re-entrant jet 

model that more accurately represents the usual cavity closure. 

Figure 6 is a photograph of an open cavity in the Free-Surface Water 

Tunnel.    The re-entrant jet is seen to be tumbling forward to form a roller 

that dissipates the energy of the jet.    The jet is not as clean as the mathe- 

matical model since it drops under the action of gravity and strikes the 

bottom wall of the cavity.    Furthermore,  in mixing with the cavity wall, it 

disturbs its own formation.    There will be closer agreement between des- 

criptions of open cavities by different investigators when consideration is 

given to the gravitational effect as determined by the Froude number and 

to the manner in which the re-entrant jet liquid contacts the boundaries of 
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the cavity.     During an early part of the present investigation,  the effects 

of changes in the Froude number on the character of the cavity and on the 
23 entrainment of cavity gas were determined 

The Jet Cavity as a Model of the Cavity with Re-entrant Jet 

It is difficult to arrange equipment in which a clear re-entrant jet can 

be observed,   since the jet will usually strike the cavity walls and disturb 

its own formation.    Attempts were made to catch the frothy roller shown in 

Fig. 6  and pump it off through a streamlined strut,  and thereby clear away 

the disturbance to the cavity wall so that a clear re-entrant jet could be 

formed.    Although these attempts were unsuccessful,   it is believed that 

some such system could be operated satisfactorily when the difficulties of 

establishing and stabilizing the desired steady-state conditions are over- 

come. 

The conception of a model of the cavity with re-entrant jet,  in which 

all streamlines have the same relative magnitude but are reversed in 

direction,  v/as found to be very easily produced in the water tunnel.    This 

is done without reversing the flow in the tunnel simply by directing a water 

jet upstream,   as shown in Fig. 7.    Similarity is maintained for any cavity 

number   o\   by maintaining a jet velocity V. = V    (1 +(ri.J     •   An open cavity 

around such a liquid jet will have its own re-entrant jet,   but this can be pre- 

vented from interfering at the front end of the cavity either by a barrier or 

by operation at a Froude number sufficiently low that the action of gravity 

on the re-entrant jet will prevent it from progressing too far forward. 

Various points in the forward region of the flow pattern around a jet cavity 

will then have velocities of the same magnitude but of opposite relative 

direction as compared with the corresponding points in the after region of 

a finite symmetrical cavity having an undistrubed re-entrant jet. 

The finite symmetrical cavity having an undisturbed re-entrant jet 

and its jet-cavity model are represented in idealized form in the diagrams 

of Fig. 8.    The jet cavity has a Riabouchinsky type closure plate behind 

which the jet liquid proceeds asymptotically to V    ,  thus making it an exact 

model of the plate-produced cavity having an undisturbed re-entrant jet. 
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To V0 

From V„ 

'ig.  8 - A,   The symmetrical,   plate-produced cavity having an 
undisturbed re-entrant jet,  and its exact model, 
B,   the jet cavity having a Riabouchinsky-type closure plate 
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The drag of the plate-produced cavity is calculated or measured with 

the assumption or provision that the re-entrant jet does not strike the plate. 

With a similar exclusion of the force on the closure plate,   a calculation can 

be made of the drag of the jet cavity.    From momentum considerations,  the 

force required to deflect the jet in the opposite direction,  i.e. ,  the drag of 

the jet cavity is 

Dj  =  QpAV (12) 

where   Q is the volume rate of flow of the jet liquid of density   p   and   AV 

is the change in velocity of the jet liquid in being reversed from an up- 

stream velocity V. = V    (1 + <r. ) '      to a downstream velocity  V    .    Since 7      j cox k' '      oo 
O = A. V    (1 + Vt^fi   where   A.   is the area of the jet having a uniform ve- 

J       °° 1/7 J l/2 
locity   V    (1 + <r, flc  and   AV = V    (1 + <r, ) '     + V      the jet-cavity drag is 

D.   =   pA. V    (1 + <rj/Z I V    (1 + O1/2 + V j       r    j     oo- k'       j_    cov k' oo 

pA.V    (1 +ff.) +  pA. V2 (1 + o-J1/2 r     j     oov k'      r    j     cov k' 

p A jV
2

00[(l + crk) + (l+«rk) 1/2 ]• (13) 

The drag coefficient based on the jet area A.  is 

'Dj 
q A. 

(1 +<rk) + (l + <r
k)l/2] (14) 

which,  a* small values of a\   where   (1 + a, ) 

close approximation 

Cn. Ä   4 + 3 c,   . 
Dj k 

+ a-,.)        Ä   1 + j o. ,   reduces to the 

(14') 

Since the jet cavity with a closure body is a model of a cavity and re- 

entrant jet produced by an identical body,  the drag force  D.  for the jet 
J 

cavity is the same as the drag  D  on the cavity-producing body.    By substi- 

tuting  D.  from Eq. (13) in Eq. (8)   it is seen that the drag coefficient of any 

body can be expressed as 

CD  =   2 [(1 ♦ ak)   ♦  (1 ♦ «J/l]  h.    , (15) 
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24 a result also obtained by Birkhoff     .    Again,  to a close approximation, 

this reduces to 
A. 

CDC   -J-(4+   Jcrk) (15') 
AD 

The ratio of the separation area of a cavity-producing object to the area of 

the re-entrant jet is,   therefore 

A. C-. 

— = —T rrrr (16> 
AD 2[a+«rk) + (l+'k)l/Ä] 

which, at small values of    <r. ,   becomes approximately 

A, C 
(16') 

AD 4 + 3 ffk 

Instead of using the particular value of  C„ corresponding to the value of 

<r. ,  recourse to Eq. (11) allows the use of CDQ,  the drag coefficient at 

0",   = 0,  to give the expression 

A-                   C<l + 'k> 
J- D0  — (17) 

AD 2[(l+ak) + (1+^/2] 

which is exact for a cavity produced by a stagnation cup and very close for 

any shape nose when <r,    is small.    At small values of or. ,   however,  this 

becomes approximately 

, -J-S-2£(l+IcFk). (17') 
1 AD 4 4 

As a verification of the derived equations and of the similarity be- 

tween the jet cavity and the cavity with re-entrant jet,  measurements of 

jet and cavity diameter have been made at different values of the cavity 

number  <r.  .    A correction was made for the velocity distribution in the 

jet to determine an equivalent jet diameter for the jet cavity.    The diam- 
] 

eter   of a jet having the same momentum and the velocity as dictated by 

the cavity pressure in accordance with Eq. (7) throughout its cross section 
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was determined from timed volumetric discharge measurements,    The 

equivalent jet diameter used in making comparisons with other cavity data 

was 1. 6% smaller than the measured nozzle exit diameter.    Using these 

cavity and jet diameters together with the derived equations in comparison 

with measurements on cavities produced by other nose shapes, no signifi- 

cant differences are observed.    This comparison requires all data to be 

reduced to a parameter that has a single value as a function of <r.   regard- 

less of the nose shape producing the cavity.    The jet cavity is included in 

the general representation of cavity characteristics presented in the follow- 

ing section. 

The General Representation of the Drag Coefficient and the Cavity 
lmensions 

A drag coefficient based on the cavity diameter and defined as the 

cavity-drag coefficient 

CDm   =   -T   • <18> 
m 

in which A     is the transverse area of the cavity at its maximum diameter m 
d    ,  is found to be a single valued function of the cavity parameter,  regard- 

less of the character of the obstacle producing the cavity.   A representation 

of  C~     vs.  a.   is generally applicable to all open cavities,   since data for 

all head shapes as well as Reichardt's theory of source-sink bodies with con- 

stant pressure distribution give an identical relation. 

Another useful relation,  involving the separation diameter d of the 

object forming the cavity,  makes use of the   square root of the cavity-drag 

coefficient.    From the definition equations  CD     =  D/(q A    ) and   Cn   = 

D/(qA,),   where  C-.  is based on the area A,  of the separation diameter d, 

it follows that 

d f Dm v|c° f ■ (19) 
m 

The diameter-length ratio of the open cavity as a function of the cavity 

parameter   <r.   was also shown by Reichardt to agree with his theory of 

source-sink bodies with constant pressure distribution and to be independent 

of the head form producing   the cavity. 
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The above three cavity characteristics are plotted as functions of <r, 

in Fig. 9.    The solid lines represent the theory of Reichardt that is based 

on source-sink bodies adjusted for constant pressure at the interface.    Data 

plotted on the \JcZ(d/d    ) curve serves as a comparison for  C_       since,  by 

definition,  Eq. (19) relates the two. 

The theory and measurements of Reichardt agree remarkably well for 

the diameter-length ratio  d    fi.     The data for    vJc"Z(d/d   )  was checked 

roughly and extended to higher values of   o\    during the present investiga- 

tion.    Values of     JC^.(d/d    )  for the jet cavity are also included.    They 

were obtained by use of the derived equations and the measured jet and 

cavity diameters.    In support of the derived equations and the concept of the 

jet cavity as a model of the cavity with re-entrant jet,  the agreement of this 

data with that of a variety of other head shapes is noted. 

The cavity characteristics plotted in Fig. 9 are generally applicable 

to all axially symmetrical open cavities,   regardless of the type of head pro- 

ducing them.    This includes aeads such as spheres and ogives where the 

separation boundary is not sharply defined but in all cases the diameter   d 

is the one on which the drag coefficient  Cn  is based.    These general cavity 

characteristics are related to the head shapes producing them through the 

use of   Cn vs.   a,    curves similar to those presented in Fig. 2.    For heads 

with an indefinite separation boundary,  Cn is not necessarily a simple 

function of  o\   nor a function of   o\   alone.    On the other hand,  heads having 

a constant separation area as   a-,   is changed will comply closely with the re- 

lation Cn = Cn0(l+ <r.).     The measurements show greater slope than can 

be explained for the slimmer heads but the agreement improves for the 

blunter shapes.    The agreement is within experimental error for the stagna- 

tion cup which serves as an excellent calibration device having a drag coef- 

ficient 

cD = 1(1 + ,k). 
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Fig.  9 - The cavity characteristics for all axially 
symmetrical open cavities 
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